349 Citations Found

Stefan Böckler, Xenia Chelius, Nadine Hock, Till Klecker, Madita Wolter, Matthias Weiss, Ralf J. Braun, Benedikt Westermann The Journal of cell biology, 2017 vol: 216 (8) pp: 2481-2498 Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells.

Angelina Huseinovic, Jolanda S. van Leeuwen, Tibor van Welsem, Iris Stulemeijer, Fred van Leeuwen, Nico P. E. Vermeulen, Jan M. Kooter, J. Chris Vos PLoS ONE 12(3) Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

Fabian Istel, Miha Tome, Sabrina Jenull and Karl Kuchler Bio-protocol, Vol 7, Iss 07, Apr 05, 2017 Here, we describe a method for a large-scale liquid screening approach in C. glabrata. This liquid media method offers several distinct advantages over solid media approaches. This includes growth measurement on a plate reader instead of comparing growth by eye-sight. Furthermore, the liquid method requires lower amounts of antifungals and offers a higher sensitivity. While this method has been optimized for C. glabrata it might be used for other Candida species and yeast-like fungi as well.

Guðjón Ólafsson, Peter H. Thorpe Methods in Molecular Biology, vol 1672. Artificially tethering two proteins or protein fragments together is a powerful method to query molecular mechanisms. However, this approach typically relies upon a prior understanding of which two proteins, when fused, are most likely to provide a specific function and is therefore not readily amenable to large-scale screening. Here, we describe the Synthetic Physical Interaction (SPI) method to create proteome-wide forced protein associations in the budding yeast Saccharomyces cerevisiae. This method allows thousands of protein–protein associations to be screened for those that affect either normal growth or sensitivity to drugs or specific conditions. The method is amenable to proteins, protein domains, or any genetically encoded peptide sequence.

Quevedo O, Ramos-Pérez C, Petes TD, Machín F. Quevedo O, Ramos-Pérez C, Petes TD, Machín F. Genomic instability is a common feature found in cancer cells. Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instabilitywould occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.

Ma L, Salas O, Bowler K, Oren-Young L, Bar-Peled M, Sharon A Mol Plant Pathol. 2016 Mar 17 Botrytis cinerea is a model plant pathogenic fungus that causes grey mold and rot diseases in a wide range of agriculturally important crops. A previous study identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of UDP-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolished production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer had no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affected fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production, and virulence. Treatments with wall stressors suggested alteration of cell wall integrity. Analysis of nucleotide-sugars revealedaccumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDGcould not be detected in hyphae of the wild type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG, modified cell wall, and developmental defects, raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition and hence on virulence. This is the first report demonstrating that accumulation of a minor nucleotide-sugar intermediate has such a profound and adverse effects on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG might lead to development of new antifungal drugs

Zhou Y, Yuikawa N, Nakatsuka H, Maekawa H, Harashima S, Nakanishi Y, Kaneko Y. Curr Genet. 2016 Jan 21. [Epub ahead of print] To gain better understanding of the diversity and evolution of the gene regulation system in eukaryotes, the phosphate signal transduction (PHO)pathway in non-conventional yeasts has been studied in recent years. Here we characterized the PHO pathway of Hansenula polymorpha, which is genetically tractable and distantly related to Saccharomyces cerevisiae and Schizosaccharomyces pombe, in order to get more information for the diversity and evolution of the PHO pathway in yeasts. We generated several pho gene-deficient mutants based on the annotated draft genome of H. polymorpha BY4329. Except for the Hppho2-deficient mutant, these mutants exhibited the same phenotype of repressible acid phosphatase (APase) production as their S. cerevisiae counterparts. Subsequently, Hppho80 and Hppho85 mutants were isolated as suppressors of the Hppho81 mutation and Hppho4 was isolated from Hppho80 and Hppho85 mutants as the sole suppressor of the Hppho80 and Hppho85 mutations. To gain more complete delineation of the PHO pathway in H. polymorpha, we screened for UV-irradiated mutants that expressed APase constitutively. As a result, three classes of recessive constitutive mutations and one dominant constitutive mutation were isolated. Genetic analysis showed that one group of recessive constitutive mutations was allelic to HpPHO80 and that the dominant mutation occurred in the HpPHO81 gene. Epistasis analysis between Hppho81 and the other two classes of recessive constitutive mutations suggested that the corresponding new genes, named PHO51 and PHO53, function upstream of HpPHO81 in the PHO pathway. Taking these findings together, we conclude that the maincomponents of the PHO pathway identified in S. cerevisiae are conserved in the methylotrophic yeast H. polymorpha, even though these organisms separated from each other before duplication of the whole genome. This finding is useful information for the study of evolution of thePHO regulatory system in yeasts.

Higuchi-Sanabria R, Charalel JK, Viana MP, Garcia EJ, Sing CN, Koenigsberg A, Swayne TC, Vevea JD, Boldogh IR, Rafelski SM, Pon LA. Mol Biol Cell. 2016 Mar 1;27(5):776-87. Higher-functioning mitochondria that are more reduced and have less ROS are anchored in the yeast bud tip by the Dsl1-family protein Mmr1p. Here we report a role for mitochondrial fusion in bud-tip anchorage of mitochondria. Fluorescence loss in photobleaching (FLIP) and network analysis experiments revealed that mitochondria in large buds are a continuous reticulum that is physically distinct from mitochondria in mother cells. FLIP studies also showed that mitochondria that enter the bud can fuse with mitochondria that are anchored in the bud tip. In addition, loss offusion and mitochondrial DNA (mtDNA) by deletion of mitochondrial outer or inner membrane fusion proteins (Fzo1p or Mgm1p) leads to decreased accumulation of mitochondria at the bud tip and inheritance of fitter mitochondria by buds compared with cells with no mtDNA. Conversely, increasing the accumulation and anchorage of mitochondria in the bud tip by overexpression of MMR1 results in inheritance of less-fit mitochondria by buds and decreased replicative lifespan and healthspan. Thus quantity and quality of mitochondrial inheritance are ensured by two opposing processes: bud-tip anchorage by mitochondrial fusion and Mmr1p, which favors bulk inheritance; and quality control mechanisms that promote segregation of fitter mitochondria to the bud.

Anyatonwu G, Garcia E, Pramanik A, Powell M, Moore CW Int. J. Mol. Sci. 2003, 4(1), 1-12 Oxidative damage can lead to a number of diseases, and can be fatal. The blm1-1 mutation of Saccharomyces cerevisiae confers hypersusceptibility to lethal effects of the oxidative, anticancer and antifungal agent, bleomycin. For the current report, additional defects conferred by the mutation in meiosis and mitosis were investigated. The viability of spores produced during meiosis by homozygous normal BLM1/BLM1, heterozygous BLM1/blm1-1, and homozygous mutant blm1-1/blm1-1 diploid strains was studied and compared. Approximately 88% of the tetrads derived from homozygous blm1-1/blm1-1 mutant diploid cells only produced one or two viable spores. In contrast, just one tetrad among allBLM1/BLM1 and BLM1/blm1-1 tetrads only produced one or two viable spores. Rather, 94% of BLM1/BLM1 tetrads and 100% of BLM1/blm1-1tetrads produced asci with four or three viable spores. Thus, at least one copy of the BLM1 gene is essential for the production of four viable spores after meiosis. During mitotic growth, mutant blm1-1 strains grew at reduced rates and produced cells with high frequencies of unusual morphologies compared to wild-type strains. These results indicated BLM1 is also essential for normal mitotic growth. We also investigated the suppression by the MSH4 gene, a meiosis-specific MutS homolog, of the bleomycin hypersusceptibility of blm1-1 mutant cells, and the relationship of MSH4 toBLM1. We screened a genomic library, and isolated the MSH4 gene on the basis of its ability to suppress lethal effects of bleomycin in blm1-1cells. However, genetic mapping studies indicated that BLM1 and MSH4 are not the same gene. The possibility that chromosomal nondisjunction could be the basis for the inability of blm1-1/blm1-1 mutant cells to produce four viable spores after meiosis is discussed.

Rho1-GEFs Rgf1 and Rgf2 are involved in formation of cell wall and septum, while Rgf3 is involved in cytokinesis in fission yeast Mutoh T, Nakano K, Mabuchi I The Rho GTPase acts as a binary molecular switch by converting between a GDP-bound inactive and a GTP-bound active conformational state. The guanine nucleotide exchange factors (GEFs) are critical activators of Rho. Rho1 has been shown to regulate actin cytoskeleton and cell wallsynthesis in the fission yeast Schizosaccharomyces pombe. Here we studied function of fission yeast RhoGEFs, Rgf1, Rgf2, and Rgf3. It was shown that these proteins have similar molecular structures, and function as GEFs for Rho1. Disruption of either rgf1 or rgf2 did not show a serious effect on the cell. On the other hand, disruption of rgf3 caused severe defects in contractile ring formation, F-actin patch localization, and septation during cytokinesis. Rgf1 and Rgf2 were localized to the cell ends during interphase and the septum. Rgf3 formed a ring at the division site, which was located outside the contractile ring and inside the septum where Rho1 was accumulated. In summary, Rgf1 and Rgf2 show functional redundancy, and roles of these RhoGEFs are likely to be different from that of Rgf3. Rho1 is likely to be activated by Rgf3 at the division site, andinvolved in contractile ring formation and/or maintenance and septation.