Corda Y, Lee SE, Guillot S, Walther A, Sollier J, Arbel-Eden A, Haber JE, Géli V
Mol Cell Biol. 2005 Dec;25(23):10652–64
RAD53 and MEC1 are essential Saccharomyces cerevisiae genes required for the DNA replication and DNA damage checkpoint responses. Theirlethality can be suppressed by increasing the intracellular pool of deoxynucleotide triphosphates. We report that deletion of YKU70 or YKU80suppresses mec1Delta, but not rad53Delta, lethality. We show that suppression of mec1Delta lethality is not due to Ku–associated telomeric defects but rather results from the inability of Ku- cells to efficiently repair DNA double strand breaks by nonhomologous end joining. Consistent with these results, mec1Delta lethality is also suppressed by lif1Delta, which like yku70Delta and yku80Delta, prevents nonhomologous end joining. The viability of yku70Delta mec1Delta and yku80Delta mec1Delta cells depends on the ATM-related Tel1 kinase, the Mre11-Rad50-Xrs2 complex, and the DNA damage checkpoint protein Rad9. We further report that this Mec1-independent pathway converges with the Rad53/Dun1-regulated checkpoint kinase cascade and leads to the degradation of the ribonucleotide reductase inhibitor Sml1.